Survey of patterns, levels, and trends of perfluorinated compounds in aquatic organisms and bird eggs from representative German ecosystems
Rüdel, Heinz; Müller, Josef; Jürling, Heinrich; Bartel-Steinbach, Martina; Koschorreck, Jan
Environ Sci Pollut Res 18 (2011), 9, 1457-1470
Zusammenfassung
Purpose
Samples from the German Environmental Specimen Bank (ESB) covering particularly the years 1994-1996, 2000-2002, and 2006-2009 were analyzed for perfluorinated compounds (PFC; mainly C4-C13 carboxylic and sulfonic acids) to gain an overview on current PFC levels and patterns in marine, limnetic, and terrestrial biota; to assess their concentrations in different trophic levels; and to investigate whether risk management measures for PFC are successful.
Methods
Specimens, either standardized annual pooled samples (blue mussels, eelpout liver, bream liver, pigeon eggs) or individual single samples (cormorant eggs, rook eggs), were collected for the German ESB program from representative sampling sites according to documented guidelines. After appropriate extraction, PFC were quantified under ISO/IEC 17025 accreditation by HPLC/MS-MS with isotopically labeled internal standards. Limits of quantification (LOQs) were 0.2-0.5 ng/g. Data are reported on a wet weight basis.
Results and discussion
In most samples the predominant PFC was perfluorooctane sulfonic acid (PFOS). However, in marine mussels from North and Baltic Seas, PFOS levels were mostly below the LOQ, but low residues of PFOS amide were found which declined in recent years. Livers of eelpout showed maximum concentrations of 15-25 ng/g PFOS in the period 2000-2002 and low amounts of perfluoropentanoate in all years. Beside PFOS (median 48 ng/g) several PFC could be determined in cormorant eggs sampled in 2009 from a Baltic Sea site. For a freshwater ecosystem, current PFC burdens for cormorant eggs were even higher (median 400 ng/g PFOS). Livers of bream from rivers showed concentrations of 130-260 ng/g PFOS, but for bream from a reference lake levels were only about 6 ng/g. In contrast to cormorants, eggs of rook and feral pigeon from terrestrial ecosystems displayed only low PFC burdens (up to 6 ng/g PFOS).
Conclusions
Generally, PFC levels were lower in marine than in freshwater biota. PFC burdens were higher in biota from the ESB-North Sea sites than in Baltic Sea organisms. Levels of PFC were quite high especially in top predators of both limnetic and marine ecosystems. Only low PFC levels were detected in eggs of terrestrial birds. A decrease of PFOS levels from maximum values around the year 2000 observed at least in North Sea biota may be a result of a production cease and shifts in marketing pattern.